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Abstract

Under repeated tensile strain, many particle-filled polymers such as silica-filled polydimethylsiloxane (PDMS), exhibit a reduction in stress

after the initial extension, the so-called Mullins effect, and the mechanism(s) responsible for this is considered to be a major unsolved mystery of

polymer physics. We report here the first observation of the absence of this effect in cross linked, silica-filled PDMS when the second strain axis is

perpendicular to the initial strain axis. This result poses a challenge for existing theories. We propose a mechanism to account for the Mullins

effect that is consistent with our experimental observations.

q 2005 Published by Elsevier Ltd.
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1. Introduction

Filled polymers, such as silica-filled polydimethylsiloxane

(PDMS) and carbon black filled rubbers, are an important class

of materials with applications ranging from sealants to the

familiar automobile tire tread compound. Under tensile strain,

they invariably exhibit a reduction in stress on the second and

subsequent extensions, a phenomenon that has come to be

known as the Mullins effect [1,2]. While the term has been

applied to unfilled rubbers and even biological systems [3], its

first association was with filled polymers. Although stress

softening does occur in unfilled rubbers, its behavior is

fundamentally different [4] from what is observed in filled

polymers. As the material is sequentially taken through

multiple extension/retraction strain cycles to higher strains,

the stress does not asymptote to the stress observed for a single

extension of virgin material as is observed for filled systems.

Moreover, the temperature dependence of the stress during the

initial extension of silica-filled PDMS is opposite that for
0032-3861/$ - see front matter q 2005 Published by Elsevier Ltd.

doi:10.1016/j.polymer.2005.09.039

* Corresponding author. Tel.: C1 505 667 2306; fax: C1 505 665 3909.

E-mail addresses: deh@lanl.gov (D.E. Hanson), hawley@lanl.gov

(M. Hawley), houlton@lanl.gov (R. Houlton), kiranc@lanl.gov

(K. Chitanvis), prae@lanl.gov (P. Rae), eborler@lanl.gov (E.B. Orler),

wrobleski@lanl.gov (D.A. Wrobleski).
subsequent extensions. Initially, it displays a negative

correlation with temperature [5], while subsequent extensions

usually show a positive correlation. The initial tensile stress

observed in unfilled rubbers invariably correlates positively

with temperature. It is likely that the fundamental mechanisms

governing stress softening are very different for filled and

unfilled polymers. Understanding the underlying physical

mechanism is considered crucial to the development of

predictive constitutive and aging models for these materials.

However, despite more than 50 years of research, the origin of

the Mullins effect is still considered ‘one of the most important

problems in rubber elasticity’ [6]. The phenomenon was first

reported in 1938 by Holt [7], but appears in an even earlier

work by Gurney and Tavener [8] dealing with energy loss in

carbon-black-filled rubber. In 1944, Alexandrov and Lazurhin

[9] proposed a mechanism based on polymer chains slipping

across the surface of the carbon black filler to account for the

stress reduction. Mullins and Tobin [10] performed more

systematic studies of the phenomenon in 1957 and postulated a

mechanism for its cause. They proposed a phenomenological

model in which the filled polymer was assumed to exist in two

phases (or zones), one soft having a lower modulus, the other

hard, with a high modulus. The tensile stress was assumed to be

a linear combination by volume fraction. Under strain, they

postulated that hard phase regions were converted to soft ones,

reducing the stress. Later, Mullins developed an elasticity

model [2] containing a damage parameter that he was able to fit
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Fig. 1. Sequential tensile strain cycles for virgin silica-filled PDMS sample

showing stress softening: first pull to 100% (circles), second pull to 200%

(triangles), third pull to 300% (diamonds). Also shown is the initial stress/strain

for a separate sample pulled to 300% (squares).
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to their tensile stress/strain experiments. Interestingly, Mullins

did report [11] observing anisotropy in the stress softening in

carbon black filled rubber under tensile strain, but he did not

speculate on a mechanism to explain it nor attempt to

incorporate this phenomenon in his models. Bueche [12]

proposed the idea that chains connecting adjacent filler

particles were comprised of a distribution of lengths. He

argued that stress softening was due to the shorter chains

becoming taut and tearing loose from the filler particles under

strain. He also developed a mathematical formalism based on

classical elasticity theory to describe the change in stress

between the first and subsequent extensions.

The focus of current theoretical work on the Mullins effect

[13–19] is predominately the modification of conventional

elasticity theories to include a phenomenological damage

parameter to describe the stress softening. The material

behavior is complex and, not surprisingly, theoretical models

have generated controversy [20,21]. With parameter values

determined by fits to experiment, the models provide useful

constitutive relations that can be incorporated into large finite-

element engineering codes. However, the theories are purely

phenomenological, containing no underlying physical structure

or mechanisms. The mathematical formalism typically ignores

stress hysteresis and permanent set (the incomplete recovery of

strained material to its original shape), and since the theories

are based on either traditional multi-chain molecular network

theories or continuum mechanics, they are inherently isotropic.

As such, none are consistent with our experimental obser-

vations, reported below. Perhaps, the most interesting recent

paper for our present work is due to Horgan et al. [22] in which

they present a stress softening theory based on a modified Gent

model of rubber elasticity [23]. They conclude that the

phenomenon of stress softening under tensile strain is clearly

anisotropic. Lacking relevant experimental data, a specific

anisotropic model was not presented.

2. Material preparation

The PDMS fumed silica composite material was prepared

using dimethyl methylvinyl siloxane copolymer (weight

averaged molecular weight w300,000 Da), purchased from

United Chemical Technologies, Inc. Petrarchw (PS255), with

0.113% methylvinyl groups. The repeat, or backbone unit of

PDMS is composed of a silicon atom bound to two methyl

groups and an oxygen atom, –[(CH3)2Si–O]–. Filler material,

amorphous silicon dioxide (SID 3352), having a specific area

of 200 m2/g, and a curing agent, 2,4-dichlorobenzoyl peroxide

50% in PDMS (SIS 6960), were purchased from Gelest, Inc.

All materials were used as received. The composite material

was prepared by weighing out the PS255 gum in a plastic

mixing jar in SpeedMixere DAC 150 FV, dual axial mixer.

The silicon dioxide filler (35 parts per hundred relative to the

PDMS) was added, followed by mixing at 3500 rpm for 45 s

and cooled in an ice bath. This procedure was repeated until

addition of the filler was complete. After the addition of the

filler, the peroxide curing agent was added, and the mixture

was placed between Teflon sheets and pressed into a thin sheet,
approximately 150 mm in diameter and 1 mm thick. The

pressing conditions were: 6000 psi at 115 8C in a Carver

hydraulic press equipped with heated platens and a constant

pressure controller. The sample was heated for 4 h then cooled

to room temperature overnight at 6000 psi. The sheets were

then placed in a 150 8C oven for 4 h, then cooled to room

temperature.
3. Experimental discussion

Large dog-bone shaped samples, approximately 110 mm

long by 25 mm wide, were diecut from the material prepared as

described above. Tensile prestraining of active lengths of about

50 mm to between 150 and 200% were carried out on an

Instron 1125 load-frame with MTS Testworks 4.0 software at a

cross-head speed was 50 mm/min. Owing to the deformation of

the gripping lugs, there was some slippage and the effective

extension rate was only about 25 mm/min, corresponding to a

nominal strain rate of w0.008 sK1. The slippage also

introduced some uncertainty into the actual value of the

prestrain. Smaller dog-bone samples (10 mm long, 2 mm wide,

and nominally 1 mm thick) were die-cut from the prestrained

material and subjected to strains of up to 300% at a strain rate

of w0.01 sK1 using a small Fullam tensile stage designed to fit

in a Veeco Metrology atomic force microscope. Control

samples that were not prestrained, were die-cut from the same

stock as the large dog bones and tested in the same way. Stress

and strain were recorded at strain increments of w0.03%. In

this paper, all references to stress will be the ‘engineering’

stress, i.e. the tensile force divided by the original, unstrained

cross sectional area.

Fig. 1 shows the stress/strain behavior of a control sample

of silica-filled PDMS through sequential extension/retraction

cycles, up to maximum strains of 100, 200 and 300%. Any

permanent set that occurred during each cycle, typically in

the range of 3–6% of the original length [24], has been

removed by re-registering the zero stress/strain point to



Fig. 3. Secondary cyclic tensile stress/strain data for a small dog-bone cut

perpendicular to first strain axis, elongated sequentially to 100%, (circles)

200% (triangles), then 300% (diamonds). Also shown for comparison is the

initial stress/strain for a control sample (squares).
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the origin. The stress was not corrected for the slight change

in thickness caused by the permanent set. Several features are

apparent. Most important, we see that the stress is reduced on

subsequent extensions up to the maximum previous strain,

the Mullins effect. Also, shown for comparison is the stress

for an independent sample, strained to 300%. For each cycle,

we note that for strains above the previous maximum, the

stress rejoins the curve that would be observed for a

continuous first extension; the material appears to remember

how far it was previously strained. The difference between

the asymptotic strain for the cycled sample and the

continuous extension to 300% is due to inherent sample-to-

sample variations. Although not shown in this figure, we have

observed that, after the second strain, very little additional

softening occurs up to the same maximum. We also see a

pronounced hysteresis in the stress within each strain cycle;

the stress during the retraction phase is always much less than

that during extension. The stress softening produced during

the initial extension of silica-filled PDMS is also permanent;

second extensions taken up to 26 weeks after the first, show

no significant stress recovery [24].

Motivated by the arguments for a stress softening

mechanism given below, we prestrained a large dog-bone to

170% and then die-cut smaller dog-bones from the center

region, two each parallel and perpendicular to the original

prestrain axis. Both sets were subjected to a second tensile

strain. One of each set was cycled sequentially to maximum

strains of 100, 200 and 300%, while the second in each set was

given a single extension to 300%. As shown in Fig. 2, the

stress/strain behavior of the latter perpendicular sample shows

no evidence of stress softening, establishing that the Mullins

effect is not present if the second strain axis is perpendicular to

the first. For comparison, we also show the stress/strain curve

for the secondary strain of the small parallel dog-bone where

the Mullins effect is clearly present. The data for the cyclic

stress/strain test for the second perpendicular dog-bone sample
Fig. 2. Tensile stress/strain for secondary strain for small dog-bone samples cut

and strained perpendicular to initial strain axis (circles), and parallel (triangles).

Also shown for comparison is initial stress/strain for a control sample (squares).

Note that stress softening is not apparent in the secondary stress curve strained

perpendicular to the original strain axis.
is shown in Fig. 3 and compared to a control sample. In both

Figs. 2 and 3 and the cyclic data for the second parallel sample

(data not shown) a clear Mullins effect is only present when the

sample is strained parallel to the first strain axis. Note also the

similarity in shape between the data in Fig. 1 for the sample

that was not prestrained and that for the sample in Fig. 3 where

the secondary strain was perpendicular to the original strain

axis. We attempted to extend this procedure to tertiary strains,

by cutting an even smaller sample from the twice-strained

sample, perpendicular to the second strain axis (parallel to the

first strain axis) to determine whether the Mullins effect could

be removed again. Unfortunately, this sample was too small to

mount in our tensile stage.

We also cut samples at angles of 15, 20, 30, 45, and 608 from

two other prestrained large dog-bones. Although the results

were inconclusive, generally, the low angle samples appeared

to exhibit a Mullins effect somewhat reduced from that of the

08 (parallel) sample while the data for the higher angle samples

showed little or no Mullins effect. Direct comparison between

the data for the two sets of samples was complicated by the fact

that the low and high angle samples were cut from different

prestrained large dog-bones, which had been strained different

amounts.
4. Proposed mechanism for stress softening

Like other investigators [5,12,13,15,25,26] we envision

silica-filled PDMS to be a continuous, high functionality

network of polymer chains connected to silica filler particles by

Van der Waals’ and electrostatic forces. Although these

interactions are commonly referred to as non-bonded inter-

actions, for convenience, we shall use the term ‘bonds’ when

referring to them. When exposed to ambient air, the fumed-

silica particles interact with water forming hydroxyl groups on

the surface. Simulations [27] suggest that the PDMS molecules

can interact with these hydroxyl groups. It is also observed

experimentally [28] that chemically treating the silica particles
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to remove these hydroxyl sites can cause a large decrease in

tensile stress/strain curve. It is this interaction that is thought to

give rise to an adhesive force between the PDMS chains and

the silica particles. Since the Mullins effect is commonly

observed only in filled polymer systems, we shall focus on

polymer/filler particle interactions and ignore network chain

crosslinks in this discussion. Crosslinks are covalent chemical

bonds that are much stronger than the non-bonded interactions

between the chains and filler particles, their principal effect

being to reduce the effective chain length between filler particle

nodes. Our previous work [29] suggests that the amount of

PDMS chain that is bound to the surface is on the order of 6

backbone sites on the polymer, with an average total binding

energy of about 25 kcal/mol. Fig. 4 shows a schematic of two

network chains, each connected to two silica filler particles that

serve as network nodes. Although we have depicted the

particles as spheres, atomic force microscope images [24,30]

clearly show that they are actually non-uniformly dispersed

aggregates containing on the order of tens of smaller, nearly

perfect w10 nm spheres of silica. We have chosen a

representative configuration, in which one chain (connecting

nodes C and D) is oriented in the plane of the figure, and the

other chain (connecting nodes A and B) passes under chain CD

and is oriented close to normal to the page. Nodes C and D are

closer together than A and B and the chain connecting them has

more slack than chain AB. We shall use the term ‘entangle-

ment’ to refer to the chain conformations and the alignment of

their end-to-end vectors relative to the strain axis. As the

network undergoes tensile strain in the direction shown by the

arrow, at some value of strain, chain AB becomes taut before

chain CD and, due to the entanglement constraint provided by

chain CD and particle D, it arrives at the surface of node D at

the point where chain CD is attached. As the strain is

incrementally increased to some value s, chain AB must pass

between chain CD and its attachment points on particle D, in

effect, removing the entanglement. We shall refer to this event

as a ‘chain-crossing’. It can do this by displacing the bonded

portion of the chain, a few backbone units at a time, perhaps

only one. The exposed bonding sites can temporarily bond to

chain AB as it slides across the surface, giving rise to
Fig. 4. Schematic of polymer chain and filler particle node network showing

two ‘entangled’ chains.
a frictional force. It is unlikely that the chain AB could slip at

either of its attachment points on particles A or B because that

would involve the simultaneous displacement of all of its

bonding sites as opposed to one or a few sites on chain CD.

After chain AB passes under a backbone unit of CD, the

displaced region of chain CD can rapidly reattach allowing it to

remain continuously bound to particle D. Once chain AB has

completely traversed the attachment region on particle D, the

original entanglement is permanently removed. When the

tensile stress is reduced, the material will relax to nearly its

original length due to retractive forces arising in the extended

chains. Any chain crossings that have been removed in this

manner will not be re-established because of two conditions: no

constraints exist to force the chains to slide between a bound

chain and the particle to which it is attached. Secondly, stress

hysteresis (Fig. 1) clearly shows that the retractive force is

much weaker than that of extension. Consequently, the next

time the material is strained along the same axis up to s,

previously removed entanglements will not be present and the

amount work required will perforce be reduced.

We propose that it is this removal of entanglements that

causes the stress to be lower on the second and subsequent

strains, i.e. provides the mechanism for stress softening. This

mechanism differs significantly from previous theories. Unlike

Mullins’ early proposal requiring that the material exist in two

‘zones’, having high and low elastic moduli, our mechanism

requires only a single elastic medium. It is also fundamentally

different from models that assume that the material undergoes

permanent ‘damage’ as chains are torn loose from the surface

of filler particles. This would imply that stress softening occurs

because the number of network chains is reduced, but this is not

compatible with our observations that stress softening is absent

if the secondary strain axis is perpendicular to the first. The

network chain density appears to be unchanged. Our

mechanism conserves the number of network chains; only

the entanglement density is reduced with respect to the original

strain axis. Over long times or at elevated temperatures,

thermal motion of the connecting chains could produce new

entanglements. However, for the time spans of the exper-

iments, we expect that removing entanglements causes changes

to the network conformation that are essentially permanent,

consistent with experimental observations [24]. For subsequent

strains larger than the first, new entanglements may be

encountered and removed in the same manner as described

above, forcing the stress to recover to previous levels. This

would account for the material’s apparent memory of its

previous maximum strain state. Clearly, whether two adjacent

chains are entangled depends on their orientation with respect

to the strain axis. It follows that, under tensile strain, only those

entanglements associated with the strain axis are removed;

entanglements associated with strains along axes perpendicular

to the first strain would likely not be affected. From this

observation, we can then predict that, if the material is strained

along an axis orthogonal to the first strain axis, stress softening

should not be observed. The experimental data shown in Fig. 2

confirms that this is indeed the case. If chains were tearing

loose from the filler particles, as proposed by some earlier
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theories, we would expect to see a reduction in stress for all

strain directions. An interesting question is: does the removal

of an entanglement associated with one strain axis lead to the

creation of ‘new’ entanglement with respect to an orthogonal

axis? The resolution of this question will have to await the next

generation of tertiary strain experiments in which we will cut

and strain a sample perpendicular to the secondary strain axis,

that is, parallel to the initial strain. However, we note in Fig. 2

that the stress for perpendicular secondary strains appears to be

about the same as the initial stress, suggesting that ‘new’

entanglements are not being created.

We define the energy density associated with the Mullins

effect (Mullins energy) as the integrated stress of the first

extension of a sample, up to some value of the strain. For a

strain of 300%, the value calculated from the data in Fig. 1 is

about 8.7 MPa, corresponding to an energy density of

8.7 J cmK3. Our proposed mechanism for stress softening

relates this energy to the product of two terms: the energy

required to effect a chain crossing and their density. The

chaincrossing energy is the sum of the binding energy of the

attached chain plus the work done to overcome the frictional

force associated with the exposed bonding sites on the particle

surface. We can obtain an estimate of the average chain

binding energy from previous work on silica-filled PDMS. In

that study [29], atomistic simulations of a PDMS chain

interacting with itself and/or a hydroxylated silica surface

were used to develop an analytic model for silica-filled PDMS

under tensile strain. Free parameters in the model were chosen

to fit the experimental tensile stress/strain for un-crosslinked

silica-filled PDMS [28]. The average binding energy between

the PDMS chains and the silica particles that is consistent with

this fit is about 25 kcal/mole. Interestingly, this is close to

Bueche’s estimate [12] for the binding energy between carbon

black particles and styrene-butadiene polymers of 22 kcal/mol.

For an estimate of the frictional work, we use the same value,

arguing that the displacing (sliding) chain should traverse, and

temporally bind to all of the binding sites originally covered by

the attached chain. Our estimate of the total average energy to

remove a chain entanglement is then about 50 kcal/mol.

Dividing the Mullins energy density by this value yields a

chain entanglement density of 2.5!1019 cmK3 for a strain of

300%. This corresponds to a molecular weight between

entanglements of w20,000 Da. This value is comparable to

the range of published [31] values of the chain entanglement

spacing (deduced from viscosity experiments) of 8000–

12,000 Da. Our results then suggest that the removal of only

about one half of the chain entanglements can account for the

observed Mullins energy. However, the term ‘entanglement’ is

not well defined and we cannot claim the relative chain

conformations to which we apply the term is the same

phenomenon operative in the viscosity experiments, but it is

not unreasonable.

The shape of our stress vs. strain curves for the initial

extension, which is typical of other experimental results

[26,32–34] in the literature, exhibits a steep increase in stress,

followed by a more gradual, nearly linear increase with strain

up to the point of tensile failure. According to our proposed
mechanism, the stress is due to the rate (with respect to strain)

at which chain crossings occur. Neglecting for the moment the

fact that the chains initially have slack, we conjecture that the

chain-crossing rate is proportional to the angular density of

chain end-to-end vectors.

sðlÞ Z aHðlÞ; (1)

where s is the stress, l is the extension factor (one plus the

experimental strain), a is a proportionality constant and H is

the angular density of chains. As the network chains become

more aligned with the strain axis, the density of chain crossing

events increases, leading to an increase in stress. We may

obtain an estimate for H starting with the usual assumption that

tensile strain can be described by an affine transformation.

Consider a chain connecting two network nodes, one at the

origin, the other at z and r, (axial and radial coordinates) in

cylindrical geometry that is strained along the z-axis. The node

coordinates transform according to

z0 Z lz; r0 Z
ffiffiffi
l

p
r; (2)

Using the Pythagorean theorem, we obtain an expression for

the initial angle between the chain end-to-end vector and the

strain axis given by

q Z cosK1 z

ðr2 Cz2Þ1=2

� �
: (3)

For an affine transformation, the distance between two

nodes scales as

rl

r0

Z
sin2 q

l
Cl2 cos2 q

� �1=2

(4)

where r0 and rl are the original and transformed node

separation distances, respectively. The chain end-to-end

angle with respect to the strain axis transforms as

ql Z cosK1 l cos q

rl=r0

� �
: (5)

We obtain the average chain end-to-end angle as a function

of extension by integrating over all possible original angles.

qavg Z
2

p

ðp=2

0

qldq (6)

A plot of Eq. (6) is shown in Fig. 5. For an estimate of the

angular density of chain end-to-end vectors, we will use the

inverse of the average angle given by

HðlÞ Z qK1
avg Z

2

p

ðp=2

0

cosK1 l cos q

sin2 q
l

Cl2 cos2 q
h i1=2

0
B@

1
CAdq

2
64

3
75

K1

(7)

Eq. (7) was evaluated numerically and a plot with a set to 2.42

is shown in Fig. 6 compared to the experimental stress/strain data

for the first extension. Both have straight lines included for

comparison. The arbitrary factor of 2.42 was chosen to yield



Fig. 5. Average network chain end-to-end angle as a function of extension

factor. For large extensions, network chains progressively align with strain

axis.
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the same slope as the experimental data. Above the low strain

region, we see that the shape of the average angular chain density

function is qualitatively the same as the experimental stress, i.e.

slightly concave. However, there is some disagreement with

experiment—not surprising in view of the simplicity of our

model. The model has a finite value at zero extension (the

experimental stress does not), and the model curve is displaced

horizontally from the experimental stress. We believe that these

discrepancies can be attributed to the fact that we have ignored

slack in the network chains, treating them simply as rigid end-to-

end vectors. Obviously, chain slack must be removed (in response

to the applied strain) before a chain-crossing event can occur, i.e.

the chain must be taut. If we assume that all chains initially have

slack in an amount proportional to their end-to-end distance, then

we may express the chain lengths as

L Z ð1 CbÞr0; (8)

where L is the chain length, b is a constant and r0 is the initial node

separation distance. We see that chains initially aligned close to
Fig. 6. Comparison of angular density of chains function, H(l) (triangles), and

experimental data (circles). The experimental data is for the initial tensile strain

and the angular density function has been scaled to have the same slope as the

experimental data. Also shown adjacent to each curve is a straight line (dashed)

for comparison. H(l) for compressive strains l!0) is also shown.
the strain axis will not become taut until the extension approaches

1Cb, that is, we must replace l by lCb in H(l). If we make this

adjustment to Eq. (1) and set b equal to 1.14, the model is then

consistent with experiment. However, this result is true only for

chains initially aligned close to the strain axis; chains aligned at

finite angles with respect to the strain axis will become taut at

higher strains. The assumption contained in Eq. (8) also ignores

the important fact that the ratio of chain lengths to node separation

distances is actually a distribution. All that we can claim from this

is that, if we were able to include chain slack in our formalism, it

would tend to move the model closer to experiment and that the

amount of slack required to do so is not unreasonable.

Eq. (7) is also valid for extensions less than one, i.e.

compressive strains, with the proviso that the average chain

angle is now defined as the complement of qavg, since the

chains align normal to the strain axis. A prediction for this type

of strain is shown in Fig. 6 by the dotted line. We show the

compressive stress as having the same sign as tensile stress for

plotting convenience; by convention, it is usually considered to

be negative. For the same reasons given above, once a chain

crossing occurs, it will not be re-established as the material

returns to its original shape. Consequently, stress softening

should be observed during the second and subsequent

compressions. We are not aware of any experimental results

in silica-filled PDMS to which these results may be compared,

however, it has been observed in carbon black filled natural

rubber [33].
5. Conclusions

Our experimental results show that stress softening does

not occur in silica-filled PDMS under tensile strain if the

second strain axis is orthogonal to the original strain axis.

This result provides valuable insight into the origin of the

Mullins effect. We have identified a physical mechanism

that accounts for the initial stress softening (the Mullins

effect), namely that the tensile stress on the first extension is

due to chain entanglements being removed by one chain

sliding under another chain at its attachment point to a filler

particle. The mechanism that we have described is consistent

with a number of experimental observations including some

of the distinguishing characteristics of the Mullins effect: (1)

the published chain entanglement spacing, (2) the shape of

the initial stress/strain curve, (3) the apparent material

memory of the previous maximum strain, (4) no stress

softening if the secondary strain is transverse to the first, (5)

the stress softening is essentially permanent. Our model also

predicts that stress softening should occur for compressive

strains and provides an estimate for the modulus. If the

interfacial bonding energy between the polymer and the

filler particle surface can be determined independently, this

theory will provide a valuable means for determining the

entanglement spacing. The principal deficiency with this

theory is that it is not yet able to realistically treat the

effects of chain slack.
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